
1. Setting Up the Development Environment 
Goal: Install and configure all tools needed for Android malware analysis and 
development (educational purposes only). 

Required Tools: 

●​ Android Studio – Full-featured IDE with emulator and Gradle integration​
 

●​ Android SDK + AVD – For creating and running Android Virtual Devices​
 

●​ Genymotion – Alternative emulator with root access support​
 

●​ Frida – Dynamic instrumentation tool​
 

●​ ADB (Android Debug Bridge) – Command-line interface to interact with devices​
 

●​ Optional: apktool, Jadx, MobSF, dex2jar for static analysis​
 

2. Preparing the Victim Environment 
Goal: Build a secure, isolated test environment for running and analyzing malicious 
APKs. 

Option A: Using Android Studio AVD 

1.​ Open AVD Manager from Android Studio.​
 

2.​ Create a new device (e.g., Pixel 4).​
 

3.​ Use a system image with x86_64 and Google APIs (Android 9+ recommended).​
 

4.​ Configure proxy to redirect traffic through Burp Suite.​
 

5.​ Launch emulator with -writable-system flag if needed.​
 

Option B: Genymotion VM 

1.​ Create a new virtual device with root access.​
 

2.​ Enable ADB bridge to communicate with host tools.​
 



3.​ Set proxy to route traffic to Burp Suite or mitmproxy.​
 

4.​ Install custom CA certificate if intercepting HTTPS.​
 

Option C: Physical Device (Optional) 

●​ Enable Developer Options and USB Debugging.​
 

●​ Root the device using tools like Magisk.​
 

●​ Connect via adb and use for realistic testing.​
 

3. Creating and Configuring a Basic APK 
Goal: Build a simple educational APK from scratch for controlled testing. 

Steps: 

1.​ Start a new project in Android Studio.​
 

2.​ Edit AndroidManifest.xml to declare basic permissions and components.​
 

3.​ Add a simple Activity that mimics malicious behavior (e.g., logging data).​
 

4.​ Build the APK in debug mode.​
 

5.​ Sign the APK manually or with debug keystore.​
 

4. APK Anatomy: AndroidManifest.xml and Smali 
Topics Covered: 

●​ Internal APK structure: classes.dex, res/, AndroidManifest.xml 
●​ Understanding the manifest: permissions, components, intents 
●​ Introduction to Smali (Dalvik bytecode format) 
●​ Editing Smali for reverse engineering, behavior injection, or bypassing logic 

●​ Practical Toolchain Overview​
 

5. Dangerous Permissions and Access Abuse 
Key Concepts: 



●​ Common dangerous permissions (READ_SMS, RECORD_AUDIO, 
ACCESS_FINE_LOCATION)​
 

●​ How malware abuses permissions:​
 

○​ Tricking users into granting access​
 

○​ Exploiting AccessibilityService​
 

○​ Silent data exfiltration or sensor activation​
 

6. Covert Access to Camera and Microphone 
Implementation: 

●​ Using Camera2 or MediaRecorder APIs to record secretly​
 

●​ Running capture code in background services​
 

●​ Avoiding system warnings or user prompts​
 

7. Screen Capture and Overlay Attacks 
Techniques: 

●​ Using SYSTEM_ALERT_WINDOW for fake overlay UIs (e.g., fake login screens)​
 

●​ Capturing screen content via MediaProjection API​
 

●​ Example scenarios: phishing overlays, invisible UI hijacking​
 

 

 


	1. Setting Up the Development Environment 
	Required Tools: 

	2. Preparing the Victim Environment 
	Option A: Using Android Studio AVD 
	Option B: Genymotion VM 
	Option C: Physical Device (Optional) 
	Steps: 

	●​Practical Toolchain Overview​ 

